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Abstract. Vortex-antivortex pairs in 2D easy-plane ferromagnets have characteristics of solitons in two
dimensions. We investigate numerically and analytically the dynamics of such vortex pairs. In particular
we simulate numerically the head-on collision of two pairs with different velocities for a wide range of the
total linear momentum of the system. If the momentum difference of the two pairs is small, the vortices
exchange partners, scatter at an angle depending on this difference, and form two new identical pairs. If it
is large, the pairs pass through each other without losing their identity. We also study head-tail collisions.
Two identical pairs moving in the same direction are bound into a moving quadrupole in which the two
vortices as well as the two antivortices rotate around each other. We study the scattering processes also
analytically in the frame of a collective variable theory, where the equations of motion for a system of four
vortices constitute an integrable system. The features of the different collision scenarios are fully reproduced
by the theory. We finally compare some aspects of the present soliton scattering with the corresponding
situation in one dimension.

PACS. 75.10.Hk Classical spin models – 75.70.Kw Domain structure (including magnetic bubbles) –
05.45.Yv Solitons

1 Introduction

The statics and dynamics of magnetic vortices is already
an old subject [1–4]. An increasing interest in the problem
has arisen again [5–7] which is connected with the synthe-
sis and experimental study of new low-dimensional mag-
netic compounds such as two-dimensional magnetic lipid
layers, organic intercalated quasi-2D layered magnets and
HTSC-materials in the antiferromagnetic state.

Magnetic vortices play an important role in easy-plane
magnets. They are the main ingredients in the Kosterlitz-
Thouless phase transition. At a finite temperature the
density of vortices is large and they should give a con-
siderable contribution to the dynamic correlations.

We already have a detailed picture of the dynamics in
a system with a small number of vortices. An isolated vor-
tex in an infinite system can only move together with the
background flux [3,8]. Two vortices interact and undergo
Kelvin motion if they have opposite topological charges
while they move one around the other when they have the
same charge. We shall call the pair of two vortices with
opposite topological charge a vortex-antivortex pair (V-A
pair). Such pairs can have the characteristics of a soliton
in the sense that they move coherently with some constant
velocity. Solitons of this kind have been numerically inves-
tigated in some magnetic systems [9,10]. Analogous V-A
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pairs have been studied in superfluids [11–13], nonlinear
optics [14] and hydrodynamics [15].

In a system with a lot of vortices the picture becomes
accordingly more complicated. If we suppose a dilute vor-
tex gas, the average velocity is V ∼ √ρ ∼ 1/L, where
ρ is the density of vortices and L the average distance
between them. The interaction energy is proportional to
the logarithm of the average distance. This picture should
be realistic above the Kosterlitz-Thouless temperature. At
low temperatures vortex-antivortex pairs are expected to
form. The energy of a pair is finite and it is proportional
to the logarithm of its size. The interaction potential be-
tween them is inversely proportional to the second power
of their size. One may be tempted to treat the vortex
pairs as elementary weakly interacting particles. However,
their dynamics is not Newtonian and most importantly
they have an internal structure which may change during
interaction.

In a dense enough gas of vortices, interactions among
traveling V-A pairs are unavoidable. In particular, any
change in the number of vortices present in the system, or
the number of vortices in equilibrium, should be a direct
or indirect result of the scattering among V-A pairs. Our
article is devoted to head-on and head-tail collisions be-
tween V-A pairs in easy-axis ferromagnets, i.e. to the case
of zero total angular momentum of the system. Our study
is both numerical and analytical. A collective coordinate
theory is found to be particularly successful and provides
the basis for a clear picture of the dynamics.
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Our results should also be relevant for a variety of
other systems where V-A pairs have been found. Further-
more comparisons can be made to the well-studied soliton
interactions in one space dimension.

The outline of the rest of the paper is as follows. In
Section 2 we give a short description of the system and an
account of the dynamics of vortices and vortex-antivortex
pairs. In Section 3 we present numerical simulations for
collisions between V-A pairs. Section 4 presents a theory
which explains the features of the dynamical behavior of
vortex pairs. Our concluding remarks are contained in the
last Section 5.

2 Vortices and vortex-antivortex pairs

We consider the classical two-dimensional Heisenberg fer-
romagnet with a uniaxial anisotropy of the easy-plane
type. The corresponding Hamiltonian has the form

H = −J
∑

(n,m)

(Sn · Sm) +
β

2

∑
n

(Szn)2, (1)

where Sn denotes the spin variable at site n, Szn is the
third component of Sn. The first summation runs over
the nearest-neighbor pairs. The exchange constant J and
the single-ion anisotropy constant β are positive. We
treat the spin S as a classical vector of constant length.
Usually the magnetic anisotropy is small: β/J ∼ 10−2 or
10−3. In this case we can use a continuum approxima-
tion of the Hamiltonian. We define two fields m=Sz and
Φ = arctan(Sy/Sx), where Sx, Sy, Sz are the Cartesian
components of the spin. In terms of these variables the
continuum version of the Hamiltonian reads

H =
β

2

∫
dxdy

[
(∇m)2

1−m2
+ (1−m2) (∇Φ)2 +m2

]
. (2)

The coordinates x, y are measured in units of the “mag-
netic length” l0 =

√
J/β. m,Φ are canonically conjugate

fields and the equations of motion have the Hamiltonian
form [17]

∂Φ

∂t
=
δH
δm

,
∂m

∂t
= −δH

δΦ
, (3)

explicitly

∂Φ

∂t
= m− ∆m

1−m2
− m (∇m)2

(1−m2)2
−m (∇Φ)2,

∂m

∂t
= (1−m2)∆Φ− 2m∇m∇Φ. (4)

Our numerical algorithm uses the formulation through
the stereographic variable

Ω =

√
1−m
1 +m

exp(iΦ). (5)

This satisfies the equation

i
∂Ω

∂t
= −∆Ω +

2Ω
1 +ΩΩ

∂µΩ ∂µΩ −
1−ΩΩ
1 +ΩΩ

Ω, (6)

where Ω denotes the complex conjugate of Ω. This vari-
able was used in the solution of the Landau-Lifshitz equa-
tion in one dimension since, in terms of it, the soliton
solutions attain their simplest form [17,18].

In studying statics and dynamics for the above model,
the topological density

γ =
∂m

∂x

∂Φ

∂y
− ∂m

∂y

∂Φ

∂x
(7)

is a most useful quantity. It has been called the “local
vorticity” since it plays here a role analogous to the or-
dinary vorticity in fluid dynamics [8,19]. The integrated
topological density

Γ =
∫
γ dxdy (8)

is an invariant and takes values which are integral mul-
tiples of 2π for the vortex solutions that we shall discuss
here.

The vorticity density enters the definitions of the linear
and angular momentum of the theory which read [8]

Pµ = −εµν
∫
xν γ dxdy, µ, ν = 1, 2, (9)

` =
∫

(x2 + y2) γ dxdy. (10)

The role of the total vorticity in the dynamics can be
also appreciated through the definition of the so-called
“gyrocoupling vector” [20]

G = −ẑΓ, (11)

where ẑ is the unit vector in the third direction. The gy-
rocoupling vector enters the equations which describe the
dynamics of vortices in a collective coordinate theory.

We now turn our attention to the discussion of topo-
logical excitations. We take as a boundary condition that
the field Φ is proportional to the polar angle φ at spatial
infinity. We then obtain vortex solutions which have the
form [2,3,5]

Φ = κ arctan
y − Y
x−X , (12)

m = f(|r−R|), (13)

where κ = ±1,±2, ... will be called the vortex number and
(X,Y ) is the position of the vortex center. In the following
we call the vortices with κ < 0 antivortices. The magneti-
zation field m for a vortex can be found numerically and
has the following asymptotic behavior [5]:

m = λ [1− a r2], r → 0,

m = λ b exp(−r)/
√
r, r � 1, (14)



A.S. Kovalev et al.: Scattering of vortex pairs in 2D easy-plane ferromagnets 91

where r is the distance from the vortex center, a, b are
constants and λ = m(r = 0) = ±1 we call the “polarity”
of the vortex. The radius of the vortex is unity in our
units. We use in our numerical simulations only vortices
and antivortices with κ = ±1 and polarity λ = 1.

The total vorticity of the vortices (12, 13) is Γ =
−2πκλ. The structure of the magnetic vortices (12, 13) is
similar to that of the vortices in a non-ideal Bose gas [11]
where the quantity (1−m) is the density of the Bose par-
ticles. However, the ferromagnetic vortices differ in that
they come with two possible values of the polarity λ.

The most impressive characteristic of the dynamics of
an isolated vortex is that it is spontaneously pinned in an
infinite medium. One can trace the reasons of this dynam-
ical behavior to their topological complexity which is re-
flected in the nonzero value of Γ [8]. On the other hand, a
vortex-antivortex pair undergoes Kelvin motion. This mo-
tion was studied in [21,22] (see also [23]) for a large vortex
separation. In general, Kelvin motion sets in when the two
vortices have opposite total vorticities: κ1λ1 = −κ2λ2.

One can argue that the simplest topologically nontriv-
ial objects which can be found in free translational mo-
tion should have the form of a vortex-antivortex pair with
Γ = 0. A conclusive numerical and analytical study in an
easy-plane ferromagnet was given in [9] where the profiles
of coherently moving structures were numerically calcu-
lated. There is a branch of solitons with velocities varying
from zero to unity, which is the velocity of spin waves in
the medium in our units. For small velocities the solitons
have indeed the form of a V-A pair with a large separation
L between the vortex and the antivortex. Their velocity
is inversely proportional to the distance between them

v =
1
L
, L� 1. (15)

When the velocity approaches that of spin waves in the
medium the vortex-antivortex character of the soliton is
lost. The transition occurs at v ' 0.78 in the sense that
above this velocity the spin does not reach the north pole
at any point.

Similar ideas have a long history in hydrodynamics
where V-A pairs have been studied theoretically and ex-
perimentally in 2D flows. It is known that a V-A pair
undergoes Kelvin motion in a direction perpendicular to
the line connecting the centers of the vortex and the an-
tivortex and the velocity is inversely proportional to the
distance between them [15,16]. However, all the studies
were made in the limit of point vortices, that is all mov-
ing objects had a clear vortex-antivortex character. We
shall go beyond this situation in the present paper.

3 Collisions of vortex-antivortex pairs:
numerical simulations

The investigation of the interactions among the traveling
V-A pairs comes as a natural next step after the well es-
tablished theories of the previous section. In the following,
we approach the subject through numerical simulations.

We simulate collisions of pairs which are initially moving
along the same line, say the horizontal x-axis. We are in-
terested both in head-on collisions, where the pairs move
initially in opposite directions and in head-tail collisions,
that is when they move in the same direction.

In the first set of our simulations, we confine ourselves
to V-A pairs with small velocities so that the topological
characteristics remain distinct and the vortices in the pair
retain their identity. In particular, the distance between
the vortex and antivortex centers is larger than the size
of a single vortex (L > 1 in our conventions). When the
sizes of the simulated pairs are large, that is the distance
between the vortex and the antivortex is large (L � 1),
we use as an initial condition the ansatz

Ω =
4∏
i=1

Ωi, Ωi =

√
1− fi
1 + fi

eiΦi , (16)

where fi and Φi are the functions in equations (12, 13).
They represent vortices which are centered at Ri =
(Xi, Yi) and have vortex numbers κi. In particular we
choose κ1 = −κ2, X1 = X2 ≡ x1, Y1 = −Y2 ≡ y1

for the first pair which has a size L1 = 2y1. We take ac-
cordingly κ3 = −κ4, and X3 = X4 ≡ x2, Y3 = −Y4 ≡ y2

for the second pair which has a size L2 = 2y2 (we suppose
y1, y2 > 0). The above ansatz represents two V-A pairs
which are moving on the x-axis and are set in a collision
course, as long as the size of each pair is smaller than
the distance between them: L1, L2 � δ ≡ |x1 − x2|. As
an alternative to the ansatz (16) we also use the prod-
uct ansatz of two V-A pair solitons of reference [9]. This
ansatz resembles in its gross features the ansatz (16).

We perform the numerical simulations on a 500× 500
mesh with a uniform lattice spacing, typically h = 0.2.
The time integration is performed by a fourth order
Runge-Kutta routine.

In [24] one of the present authors has investigated the
interaction process of two identical V-A pairs which collide
head-on. It was found that during the collision the vortices
exchange their partners and two new pairs are formed
which are scattered at right angles. The trajectories of
the magnetic vortices are similar to those in collisions of
V-A pairs in hydrodynamics [15,16] and they conform to
a good accuracy to the formula 1/X2

i + 1/Y 2
i = const.

obtained in the 19th century [25,26].
Here, we consider collisions of two V-A pairs with dif-

ferent velocities and consequently with different sizes. The
results of our numerical simulations are summarized in
Figures 1, 2, 3 and 4. Figure 1 presents head-on collisions
and Figure 3 head-tail collisions through contour plots of
the field m(x, y) at six snapshots during the collision pro-
cess. Figures 2 and 4 present the corresponding orbits of
the individual vortices during the interaction process. We
have traced the center of every vortex which was consid-
ered to be at the point where the field m = 1. The result of
each process depends essentially on the difference between
the sizes of the two V-A pairs. For head-on collisions we
use κ1 = κ4 = 1, κ2 = κ3 = −1 and for head-tail collisions
we use κ1 = κ3 = 1, κ2 = κ4 = −1.
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Fig. 1. Head-on collisions between vortex-
antivortex pairs. We plot here contours of
the third component of the spin using the
levels 0.1, 0.3, 0.5, 0.7, 0.9. The numbers
1, 4 denote the vortices and the 2, 3 the
antivortices. In (a) we have the case of a
small difference between the linear momen-
tum of the two pairs and the vortices ex-
change partners and scatter at an angle. In
(b) the difference in momentum is larger.
The pairs exchange partners, follow a loop-
ing orbit and finally rejoin the initial part-
ners and travel along the initial direction
of motion. In (c) the momentum difference
is large. The two pairs pass through each
other. Note that the boxes presented here
have dimensions 40 × 40 while the simula-
tions were done in a space 100 × 100.

Figure 1a presents the head-on collision of two pairs
with a small difference between their sizes. We use here the
V-A pair solitons which have been numerically calculated
in [9]. The initial ansatz in our simulation is the product
ansatz of two such pairs. We have taken the size of the
left pair L1'4 which corresponds to a velocity v1 = 0.27
and the size of the pair on the right L2'6.3 which corre-
sponds to v2 = 0.15. The initial separation measured on
the x-axis is δ = 25. In the scattering process the vor-

tices exchange their partners and two new identical pairs
are formed which are scattered at an angle. Varying the
sizes L1, L2 we observe that the angle tends to 90◦ as the
difference in the velocities (and momentums) of the two
pairs is getting smaller. This process generalizes the 90◦
scattering of two identical solitons [24].

According to (9), the larger soliton (pair on the
right) has also a larger linear momentum. Conservation
of the total momentum implies that each of the resulting
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Fig. 2. The orbits of the vortices and antivortices of Figure 1
during their head-on collision. The filled circles denote the po-
sition of vortices and the open circles the position of the an-
tivortices at successive and equal times intervals. The num-
bers 1, 2, 3, 4 denote the initial position of the vortices and
antivortices.

identical pairs has a non-zero x-component of the mo-
mentum and a velocity to the left. Figure 2a shows the
trajectories followed by each vortex and antivortex. Open
circles denote the centers of the antivortices and filled cir-
cles those of the vortices.

We defer for later the case of an intermediate difference
between the sizes of the two pairs and discuss first the case

  

  

  

  

  

  

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

Fig. 3. Head-tail collisions between vortex-antivortex pairs.
We plot here contours of the third component of the spin us-
ing the levels 0.1, 0.3, 0.5, 0.7, 0.9. The numbers 1, 3 denote the
vortices and the 2, 4 the antivortices. In (a) the momentum dif-
ference is large and the pairs pass through each other. In (b) we
have a propagating quadrupole state. The boxes have dimen-
sions 40× 40, the simulations were done in a space 100× 100.
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Fig. 4. The orbits of the vortices and antivortices of Figure 3
during their head-tail collision. The filled circles denote the
position of vortices and the open circles the position of the
antivortices at successive and equal times intervals. The num-
bers 1, 2, 3, 4 denote the initial position of the vortices and
antivortices.

of a large difference (Figs. 1c and 2c). In the latter case one
expects that the vortices which belong to different pairs
will interact loosely with the vortices of the other pair.
As a result, the two pairs are expected to travel almost
undistracted. We use the ansatz (16) with the parameters
L1 = 4, L2 = 7L1 = 28. The initial separation of the pairs
is δ = 30. The result is close to expectations, that is the
small pair passes through the large one. The distortion in
the trajectories should become smaller as the size of the
large pair becomes larger. This case is thus analogous to
soliton interaction in one-dimensional integrable systems,
as has been noted by Aref [27].

In order to explore further this analogy we have plotted
in Figure 5a the x-coordinate of the two pairs as a function
of time. (The data of Fig. 2c correspond to the data of
Figure 5a only until time = 345.) We observe that the fast
pair experiences a delay during the interaction with the
slow one, which results in a negative shift (in comparison
to the free motion) in its x-position after the collision.
On the other hand, the slow pair is accelerated during
the interaction and thus gains a positive shift in its x-
position. The present observation should be contrasted to
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Fig. 5. (a) shows the positions on the x-axis of the two
pairs (12) and (34) as a function of time, for the simulation
of Figures 1c. (b) shows the positions on the x-axis of the two
pairs (12) and (34) as a function of time, for the simulation of
Figures 3a. See text for details.

the situation in one-dimensional soliton collisions where a
positive shift for both solitons is observed in all models.

An intermediate situation between those in Figures 1a
and 1c is presented in Figure 1b. The parameters in the
initial ansatz are L1 = 4, L2 = 6L1 = 24, δ = 34. The
pairs initially exchange partners during the scattering pro-
cess and form new V-A pairs just as in the simulation in
Figure 1a. However, after some excursion the new pairs
approach each other again, exchange partners once more
and the initial pairs re-emerge traveling along their initial
direction of motion. The trajectories followed by the vor-
tices are depicted in Figure 2b. A similar scenario for point
vortices in hydrodynamics has been discussed in [28].

In the next set of simulations we explore the situa-
tion of a head-tail collision. That is, both the slow and
the fast pair move to the same direction (to the right in
Figs. 3a, 4a). The parameters here are L1 = 8, L2 = 20,
δ = 25. The two pairs pass through each other, but some
difference to the case of Figure 1c should be pointed out.
In Figure 5b we give the x-component of the trajectories
of the pairs. We find that the fast pair is accelerated dur-
ing the interaction (positive shift) while the slow pair is
decelerated (negative shift). (See, however, the relevant
remarks in the next section.)

The last simulation, presented in Figures 3b and 4b,
includes two identical V-A pairs traveling along the same
direction. It can be considered as a limiting case to that
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of Figure 3a when the sizes of the pairs are equal. The pa-
rameter values are L1 = 8, L2 = 8, δ = 6. The system can
be also viewed as a vortex-vortex pair and an antivortex-
antivortex pair. Both pairs rotate while at the same time
the magnetic quadrupole which is formed is propagating
along the x-axis. A similar “leap-frogging” motion was
studied in hydrodynamics by Love [29] and has also been
observed with two vortex rings [30]. Since the magnetic
quadrupole is characterized by two parameters (the ve-
locity and the internal frequency) it can be considered as
an analog of a breather [27,28]. We can make an estimate
of the mean velocity of propagation of the quadrupole.
Suppose that L is the mean distance of the pair of vor-
tices from the pair of antivortices. If this is large com-
pared to the distance between vortices of the same kind
we may consider the quadrupole as two dipoles on top of
each other. Then, a straightforward generalization of the
results of [9] gives

v ' 2
L
, L� 1. (17)

The rough estimate says that the quadrupole propagates
with twice the velocity of a single V-A pair. In the present
case, we have L = 8 which implies a velocity v ' 0.25.
Indeed, our simulations show that the quadrupole in Fig-
ures 3b, 4b, propagates with a mean velocity vq ' 0.24
while a single V-A pair with a size L = L1 = 8 has a
mean velocity vd'0.125.

The richness of the above results shows that exploring
numerically the different scenarios that occur during the
interaction of two V-A pairs is a rather cumbersome task.
We note that in the processes that we have been studying
all the vortices retain their identity during collision. This
implies that an analytical calculation based on collective
coordinates should be successful in reproducing the nu-
merical results and should also provide an overview of the
observed phenomena. This task will be taken up in the
next section.

In the remainder of the present section we continue
with simulations of collisions of solitons which do not have
a distinct vortex-antivortex pair character. We use here
again the semitopological solitons found in [9]. An exam-
ple is given in Figure 6. In the initial state, in the first
entry of the figure, the V-A pair on the right has a veloc-
ity v2 = 0.1 while the other soliton on the left has a large
velocity, specifically here v1 = 0.9, and has no vortex-
antivortex character. The clear numerical result, shown in
the remaining five entries of the figure, is that the fast
soliton is split at collision time in a vortex and an an-
tivortex. The outcome is two identical V-A pairs which
are scattered at an angle.

We perform a series of simulations of collisions between
solitons, where one of them has a definite velocity – we
chose v2 = 0.1 – while the velocity of the other one varies
in the range 0.1≤ v1 < 1. The results are summarized in
Figure 7 which gives the cosine of the scattering angle θ as
a function of the velocity v1 of the fast soliton (filled circles
connected with a solid line in the figure). The scattering
angle is measured (in Fig. 6) from the negative horizontal

 

 

  
 

 

  
 

 

 

 

Fig. 6. Head-on collision between a slow V-A pair with velocity
v2 = 0.1 (right in the first entry) and a fast soliton with velocity
v1 = 0.9 (left in the first entry). We present six snapshots at
times t = 0, 22, 44, 66, 88, 132. The fast soliton is split in a
vortex and an antivortex at the time of collision. The vortices
exchange partners and two new pairs are formed which are
scattered at an angle.

0.1 0.3 0.5 0.7 0.9
 υ1

0

0.2

0.4

0.6

0.8

1

co
sθ

Fig. 7. The cosine of the scattering angle for a series of sim-
ulations where the slow soliton has a velocity v2 = 0.1 and
the fast one 0.1 ≤ v1 < 1, is given by the dots which have
been connected by a solid line. The dashed line results from
conservation of energy and linear momentum. The dotted and
the dot-dashed lines give the result of formula (35) for two dif-
ferent methods of calculating the soliton lengths (see text for
details).
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axis. We have θ = π/2 when the velocities of the two
solitons are equal, that is when v1 = v2 = 0.1. It is then
monotonically decreasing as v1 increases until the value
v1'0.9.

When the velocity of the second soliton becomes
greater than the value v1 ' 0.91 we face a new scenario.
The soliton is initially split into a V-A pair, then fol-
lows a loop and finally it re-joins its initial partner. We
eventually obtain the picture of two solitons which have
passed through each other. The scenario resembles that of
Figure 1b. The difference here is that, well after the colli-
sion time, the fast soliton is destabilized. When the veloc-
ity of the fast soliton is increased, the loop that the vor-
tices follow during collision becomes smaller. For v1 & 0.97
we have no loop any more, and the fast soliton passes
through the slow pair.

The value v2 = 0.1 used in the simulations in Figure 7
is not special. We can obtain results similar to those in
Figure 7 using a different v2, e.g. v2 = 0.2 or 0.3. The
value of v1 until which scattering at an angle occurs, seems
to be close to the value v1 = 0.9 in these cases, too. For
increasing v2 the minimum scattering angle, that we can
obtain by simulations, increases.

The simulations of this section give an overview of the
possible scattering scenarios. However, the picture will not
be complete until we obtain an analytical understanding.
The theory which we present in the next section accounts
for the simulations presented in Figures 1, 3 and provides
a reasonably satisfactory understanding. A step towards
the understanding of the results of Figures 6, 7 will also
be taken.

4 Collision of vortex-antivortex pairs:
analytical description

A full analytical investigation of interactions between vor-
tex pairs appears to be quite complicated. Suffice it to say
that no analytical formula is known for a single vortex
pair soliton. However, one can employ a rigid shape ap-
proximation and suppose that each vortex is a coherently
traveling structure and is also well separated from all the
others. Then the dynamics of the system of vortices re-
duces to that of their centers Ri. The latter obey the
equations [20,4]

dRi

dt
×Gi = Fi, (18)

where Gi is the gyrocoupling vector (11) for vortex i and
Fi ≡ −∂E/∂Ri. The quantity E is the interaction energy
between the vortices, therefore we call Fi the force on
vortex i exerted by the other vortices in the system.

To make further progress we need the form of E, that
is we need to know the field of the vortices. Under the as-
sumption that the vortices are “quasi-static” the field of a
single vortex is approximately given by equations (12, 13).
One should note that the energy is finite only when∑

i

κi = 0, (19)

where κi is the vortex number of a single vortex. We shall
study only this situation here. Then the energy E of the
vortex interaction has the form [31]

E ' −2π
∑
i<j

κi κj ln(|Ri −Rj |), (20)

where a constant has been omitted.
We put Ri = (Xi, Yi) in equation (18) and obtain

dXi

dt
= −

∑
j 6=i

κj
(Yi − Yj)

(Ri −Rj)2
,

dYi
dt

=
∑
j 6=i

κj
(Xi −Xj)
(Ri −Rj)2

· (21)

These are the same as the equations of motion of point
vortices in hydrodynamics [15,16] when the hydrodynamic
“vortex strengths”, which correspond to κi in the present
system, are ±1.

One can now see that

Px =
∑
i

P xi =
∑
i

2π κi Yi,

Py =
∑
i

P yi = −
∑
i

2π κiXi, (22)

as well as

` =
∑
i

2π κi (X2
i + Y 2

i ) (23)

are conserved quantities. Equations (22) give the two com-
ponents of the total momentum and equation (23) gives
the total angular momentum of the system. They can be
derived from the formulas (9, 10) when the rigid-shape ap-
proximation is used. We further note that equations (18)
can be derived as the Hamilton equations associated with
the Hamiltonian (20) with the conjugate variables Xi and
P xi = 2π κi Yi.

In general, system (21) is integrable only for a system
of three point vortices. However, for a system of two V-A
pairs, for which condition (19) is satisfied, equations (21)
can be integrated, when the pairs are initially moving
along the same line [32]. This is a fortunate situation since
we shall be exclusively concerned with such systems in the
present paper.

The approximations employed so far seem to be quite
crude. For instance we expect the rigid-shape approxima-
tion to be valid when the distances between the vortices
are much larger than the size of the out-of-plane structure
of each vortex (unity in our units). This could severely re-
strict the applicability of equations (21). However, the nu-
merical simulations, of the previous section, indicate that
the results of the present approximate theory could be
qualitative correct even for situations beyond the applica-
bility limits of the theory.

In the following we give the equations of motion of
two V-A pairs. The vortex and antivortex of the first pair
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are placed at positions (x1,±y1) and have κ = ±1 . We
denote this pair schematically as (12). The second pair is
at (x2,±y2), has κ = ∓1, and is denoted (34). (cf. top
entries of Fig. 1.) We choose the polarity λ = 1 for all
vortices. The system represents two V-A pairs in a head-
on collision course. From equations (21) we derive the four
equations of motion

dx1

dt
=

1
2y1

+
y1 − y2

(x1 − x2)2 + (y1 − y2)2

− y1 + y2

(x1 − x2)2 + (y1 + y2)2
, (24)

dy1

dt
= − x1 − x2

(x1 − x2)2 + (y1 − y2)2

+
x1 − x2

(x1 − x2)2 + (y1 + y2)2
, (25)

dx2

dt
= − 1

2y2
+

y1 − y2

(x1 − x2)2 + (y1 − y2)2

+
y1 + y2

(x1 − x2)2 + (y1 + y2)2
, (26)

dy2

dt
= − x1 − x2

(x1 − x2)2 + (y1 − y2)2

+
x1 − x2

(x1 − x2)2 + (y1 + y2)2
· (27)

The system (24–27) is completely integrable since there
are four independent conserved quantities. We shall use
the energy and the x-component of the linear momentum:

y1y2
(x1 − x2)2 + (y1 − y2)2

(x1 − x2)2 + (y1 + y2)2
= y

(0)
1 y

(0)
2 , (28)

y1 − y2 = y
(0)
1 − y(0)

2 . (29)

We suppose that the pairs are initially on the x-axis and
at an infinite distance from each other. Then, y(0)

1 , y
(0)
2

denote the y-coordinates of the vortices at time t = −∞.
We define L1 ≡ 2y(0)

1 and L2 ≡ 2y(0)
2 as the sizes of

the pairs. We take L2 ≥ L1 while L1, L2 � 1. Therefore
we have for the velocities:

v1 =
1
L1
, v2 =

1
L2
, (30)

that is, (12) is the “small” and fast pair and (34) is the
“large” and slower pair. Equations (24–27) were studied
within the framework of hydrodynamics in [28,29,33]. It
was shown that the behavior of the pairs during scattering
depends on the ratio α = L2/L1 = v1/v2. There are the
following three cases:

(a) when 1 ≤ α < α1 = 3+2
√

2 ' 5.83, the pairs change
partners during the process and scatter at an angle
(Fig. 1a).
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Fig. 8. A schematic overview of the different possibilities for
head-on and head-tail collision between two soliton pairs. v1

and v2 are the velocities of the two pairs. The regions a, b
and c correspond to to the cases a, b and c of Figure 1. The
region d corresponds to the case of Figure 3a and the scenario
of Figure 3b occurs for velocities on the line OE.

(b) In the intermediate case, when α1 < α < α2 = (
√

2 +√√
5− 1)/(

√
2−
√√

5− 1)'8.35, the vortices change
partners during scattering but later they rejoin their
initial partners and travel along the initial direction of
motion (Fig. 1b).

(c) When α>α2 the fast pair passes through the slow one
(Fig. 1c).

In Figure 8 we give a schematic representation of the dif-
ferent regions in the (v1, v2) plane where the three scat-
tering processes occur.

In case (a) the scattering process can be described by
(12)+ (34)→ (13)+ (24) which is a schematic representa-
tion of the change of partners during collision. In the limit
of two identical pairs one can use Love’s [29] equation (28)
to obtain the following well-known result

1
x2

1

+
1
y2

1

=
1(

y
(0)
1

)2 , (31)

which is in good agreement with the data of the numeri-
cal simulation of the Landau-Lifshitz equation [24]. In the
general case of two different ingoing pairs, the outgoing
pairs will actually be identical. Equations (28, 29) give for
the size of the two identical outgoing pairs

Lout =
√
L1 L2. (32)

This formula is known for point-like vortices in 2D hydro-
dynamics of incompressible fluids [16].

The angle of scattering can be found if we use the laws
of conservation of energy and linear momentum:

E =
E1 +E2

2
, P cos θ =

P2 − P1

2
, (33)

where E is the energy and P the absolute value of the
linear momentum on the x-axis of each of the final pairs.
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The angle θ is measured from the direction of motion of
the slow pair. We obtain

cos θ =
P2 − P1

2P
· (34)

The calculation of P requires the use of the energy conser-
vation law and the energy-momentum dispersion relation
which is known numerically [9].

Figure 7 shows the numerical results (filled circles con-
nected by lines) for the cos θ as a function of v1, keeping
a constant v2 = 0.1. We have v1 > v2. The dashed line
results from equation (34) and it is a very good approx-
imation of the simulation results until v1 ∼ 0.78. At this
value the dashed line has a maximum. Until this critical
value of v1 the collision is elastic in the sense that almost
no energy is dissipated in radiation. We also have to men-
tion that the approximation shown by the dashed line is
getting worse as the velocity v2 is increasing.

In the approximation of equations (24–27) and (30) we
have for the scattering angle:

cos θ =
α− 1
2
√
α
· (35)

The limiting cases are θ = π/2 for α = 1 and θ = π when
α = α1. Some care is needed in interpreting the angle
θ = π in the last limiting case. In this case the new pairs
which emerge follow the parabolic orbit

x1 = − 2 y2
1

L2 − L1
= − y2

1

2(1 +
√

2) y(0)
1

· (36)

The above results, should be a good approximation in the
limit of large L1, L2.

There is a simple way to apply equation (35) when the
two colliding V-A pairs are slow and the vortex and an-
tivortex in a pair are well separated. The size of each pair
can be taken to be the distance between the two points
where the spin variable reaches the north pole and its ve-
locity is the inverse of it. This method gives fairly good
results for simulations with pairs of the size used in Fig-
ure 1.

A comparison of equation (35) with numerical results
is given in Figure 7. The cosine of the angle θ for 1 ≤
α ≤ α1, is plotted by a dotted line. Figure 7 shows cos θ
as a function of v1, for v2 = 0.1. (not as a function of α).
We have v1 > v2 and we consider α = v1/v2. The dotted
line is a poor approximation to the simulation results for
α > 4 (v2>0.4). The deviation from the numerical points
is even qualitatively wrong already for v2 & 0.583.

We recall at this point that in our simulations of
the previous section we obtained results which could be
understood as interaction processes between two dipoles
even in the cases where the V-A pairs have no apparent
dipole character. Exploiting this remark we assume that
the V-A pair solitons (even those with large velocities and
no apparent vortex-antivortex character) are dipoles with
a length L and a charge q. To be sure, in the limit that
the velocity goes to zero, L should go to the simple defi-
nition of length described in the previous paragraphs and

q should go to the vortex number κ = ±1. In general,
however, we use a generalization of equations (22, 15) and
write for the momentum and velocity of such a dipole:

P = 2π qL, v =
q

L
· (37)

The length and charge of the dipole are then given by

L =

√
P

2πv
, q =

√
Pv

2π
, (38)

where the values for P, v can now be taken from the Table
of reference [9]. In the limit v→0 we use the relation Pv =
2π to find that L = 1/v→∞ and q = ±1, which is the
expected limit. In the opposite limit v→1, an asymptotic
analysis [9] gives that P ∼ 1/

√
1− v2 → ∞, that is an

infinite length of the dipole and also q ∼ 1/
√

1− v2 →∞.
For intermediate velocities the length L is finite and it
reaches a minimum for v ' 0.87. The values for the charge
q are relatively close to unity for v < 0.5 and they increase
rapidly for v > 0.9.

The interesting result is presented in Figure 7 by the
dot-dashed line. It is obtained by applying equation (35),
where for α we substitute the ratio of lengths of the two
V-A pairs given from equation (38). The curve is com-
pared quite good with the results of the simulations even
for large velocities. However, after v2 = 0.9 the present
approach fails completely. Indeed, we have no reason to
believe that an approximation based on dipoles would be
correct in the limit v → 1.

We now turn to case (c) where the initial pairs survive
throughout the process. For α large enough an expansion
gives, with an error O(1/α4), the trajectories

x1 = v1 t−
4
v1

arctan (2v1v2 t) ,

x2 = −v2 t−
1
α2

2
v2

(2v1v2t)
1 + (2v1v2t)2

− 1
α3

4
v2

arctan(2v1v2t) + ...

y1 = y
(0)
1

(
1 +

1
α

4
1 + (2v1v2 t)2

)
,

y2 = y
(0)
2

(
1 +

1
α2

4
1 + (2v1v2 t)2

)
, (39)

where v1, v2 are given in equation (30) and the dots in the
second equation stand for a lengthy term of order 1/α3

which we shall not need in our analysis. It follows that,
in this approximation, the fast pair (12) deviates strongly
from the rectilinear motion. The shifts in the positions
of the vortex pairs as time varies from −∞ to ∞, are
∆x1 = −4π/v1 for the fast pair and ∆x2 = 4π/v2α

3 for
the slow one. (The terms in the dots do not give any shift
in the pair position when times goes from −∞ to∞.) The
shifts are measured relative to the direction of motion of
each pair. The results of the simulations for the vortex
system show that the fast pair is decelerated during the
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collision as if it is repelled by the slow one, in agreement
with equation (39). The simulations further show that the
slow pair is accelerated during the collision as if it is at-
tracted by the fast one. The final result is a positive and
negative shift in the positions of the fast and slow pair,
respectively, a phenomenon which has not been observed
in head-on soliton collisions in one dimension. The ob-
tained trajectories are similar to those for the 2D Euler
equation [34].

In case (b), α1 < α < α2, the scattering process is
represented by the scheme (12) + (34) → (13) + (24) →
(12)+(34). This means that the vortices exchange partners
at a first stage of the scattering, then the new pairs follow
a looping orbit and at the final stage the initial partners
rejoin and travel along the initial direction of motion (cf.
Figs. 1c, 2c). The loop becomes the parabola (36) in the
limit α = α1 and it is a cusp when α = α2.

We now turn to the head-tail collision. It corresponds
to the area denoted (d) in Figure 8 and the relevant nu-
merical simulations have been given in Figures 3 and 4.
The case has been studied within a hydrodynamical con-
text in [25,29,28]. As Love showed, only a slip-through
motion (Fig. 3a) and a leap-frogging motion (Fig. 3b) can
occur.

Suppose that vortices 1 and 3 have κ = 1 while 2 and 4
are antivortices and have κ = −1 (cf. Fig. 3a). The equa-
tions of motion are modified as follows: the left hand side
of (24, 25) and the first term on the right hand side of (26)
change their signs. The conserved quantities (28, 29) now
read

y1y2
(x1 − x2)2 + (y1 + y2)2

(x1 − x2)2 + (y1 − y2)2
=

y
(0)
1 y

(0)
2

(
x

(0)
1 − x

(0)
2

)2

+
(
y

(0)
1 + y

(0)
2

)2

(
x

(0)
1 − x

(0)
2

)2

+
(
y

(0)
1 − y(0)

2

)2 , (40)

y1 + y2 = y
(0)
1 + y

(0)
2 . (41)

The pairs are initially at (x(0)
1 ,±y(0)

1 ) and (x(0)
2 ,±y(0)

2 ).
Using the above one can find that two pairs which start
infinitely far apart will pass through each other for any
value of y(0)

1 <y
(0)
2 .

For a large difference in the size of the pairs (α� 1)
we find, by an expansion, the solution of the equations of
motion (with an error O

(
1
α4

)
):

x1 = v1 t+
4
v1

arctan (2v1v2 t),

x2 = v2 t−
1
α2

2
v2

(2v1v2t)
1 + (2v1v2t)2

+
1
α3

4
v2

arctan(2v1v2t) + ...,

y1 = y
(0)
1

(
1− 1

α

4
1 + (2v1v2 t)2

)
,

y2 = y
(0)
2

(
1 +

1
α2

4
1 + (2v1v2 t)2

)
· (42)

The dots stand for terms of order O
(

1
α3

)
which do not

contribute to the shift in the position of the pair when
times varies from −∞ to ∞. In the present case, the shift
of the fast pair is to the direction of its motion ∆x1 '
4π/v1. The shift of the slow pair is also positive but small
∆x2 ' 4π/(v2α

3). However, the numerical simulations of
the previous section (Fig. 5b) have given a small shift
for the slow pair opposite to its direction of motion. We
believe that this should be a consequence of the second
term in the second of equations (42) which is dominant
because of our small space and short integration time. We
note here again a difference of the present system with
the situation in 1D. For instance, in KdV the fast soliton
acquires a positive shift and the slow one a negative shift
due to a head-tail collision.

A difference between the head-on and head-tail colli-
sion for the case of large α, is that during the collision
the size of the small pair increases in the head-on collision
case (Eq. (39) and Fig. 1c) but it decreases in the head-tail
collision case (Eq. (42) and Fig. 3a).

In the limit of a small difference of the sizes of the pairs
(α' 1) the relative shift of the pairs grows and tends to
infinity for identical pairs like ∆x1−∆x2 ∼ 4/(v1−v2). In
the limit of two identical pairs the asymptotes of the solu-
tion after the scattering have the form x2 = V t−

√
t, x1 =

V t+
√
t and, at large distances, the distance between pairs

goes as x1 − x2 = 2
√
t. It is interesting to compare this

shift with that for solitons in 1D systems where the shift
is proportional to the logarithm of the difference of the
velocities of the two solitons (∆x1 ∼ ln(v1−v2)) and the
distance between two identical solitons after collision goes
like x1 − x2∼ ln t.

Two V-A pairs which have a finite distance between
them, will pass through each other when the following
relation holds

(
y

(0)
2 + y

(0)
1

)2
[(
y

(0)
2 + y

(0)
1

)2

− 2
(
y

(0)
2 − y(0)

1

)2
]

(
y

(0)
2 − y(0)

1

)2 >

(
x

(0)
2 − x

(0)
1

)2

. (43)

In the opposite case, the pairs form a translating bound
quadrupole state. The translation is accompanied by a ro-
tation of the two vortices and the two antivortices around
each other. This leap-frogging motion was first analyzed
in [29]. An example is given in Figures 3b and 4b. The
quadrupole state has lately acquired special interest due
to its relation to breather modes [28].

We shall analyze some characteristics of the leap-
frogging motion in the case that the two rotating vortices
are well separated from the two rotating antivortices. We
call L the distance between the two pairs. The two vor-
tices rotate clockwise and the two antivortices counter-
clockwise. The translational motion of the quadrupole has
the velocity given in equation (17). With the further as-
sumption that the distance δ between the vortices of the



100 The European Physical Journal B

same pair is large compared to the size of a single vortex
(but still small compared to the size of the quadrupole:
L, δ � 1, L � δ), we find from equations (39) the fre-
quency of rotation

ω ' 2
δ2
− 2
L2
· (44)

5 Conclusions

We have presented a detailed study for the head-on and
head-tail collisions between vortex-antivortex pairs in 2D
easy-plane ferromagnets. The V-A pairs are the simplest
units which can be found in free translational motion in
our model. However, they have a nontrivial internal struc-
ture which is responsible for their unusual behavior during
interaction. Our study combines numerical simulations,
which yield a variety of interesting scattering scenarios,
with a collective variable theory, which leads to an under-
standing of the main features of the scattering scenarios.
The change of partners between V-A pairs during inter-
action is the most remarkable effect in our case. It is due
to the internal structure of the V-A pairs which has been
fully taken into account.

In a study of a system of a lot of vortices the mecha-
nisms which have been described here should play a dom-
inant role in the way to the final steady state. The relax-
ation process should include a multitude of collisions of
vortices and the formation of steady structures.

From the point of view of soliton theory in two di-
mensions, our results are novel and can be compared with
a variety of studies in the field. Some comparison is also
done with soliton theory in one space dimension.

The scattering of coherently traveling objects in two
dimensions appears to be of interest in a variety of physical
systems. Objects similar to the V-A pairs studied here
exist in systems in different fields of physics [12–15]. Even
in nonequilibrium systems [35,36] studies similar to the
present one have been performed and some similar results
have been derived.
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work and for interesting conversations. We also thank the au-
thors of [9] for kindly providing us the numerical code for the
calculation of the V-A pair solitons. A.S.K. thanks the Univer-
sity of Bayreuth for its hospitality. A.S.K. and S.K. acknowl-
edge financial support from the Graduiertenkolleg “Nichtlin-
eare Spektroskopie und Dynamik”.
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